Instructor: Jishnu Biswas

Indian Statistical Institute B.Math.(Hons.) II Year First Semester Examination, 2005-2006 Algebra III Date: 21-11-05 Total Marks : 50

Time: 3 hrs

Attempt all questions

- 1. State whether the following statements are true or false and justify your answer (quote a relevent theorem or give an argument/counterexample)
 - a) If L/K and K/F are Galois extensions then so is L/F.
 - b) A regular 17-gon is constructible by ruler and compass.

c) Any finite group is the Galois group of an extension K/F of fields for some K and F.

d) Let K be the splitting field of $x^3 + x + 1$ over Q. Then $\sqrt{-1} \in K$.

 (5×4)

2. a) Let p be a prime number, \mathbb{F}_p the finite field with p elements and \mathbb{F}_q , for $q = p^n$, be the extension of \mathbb{F}_p of degree n. Consider the Frobenius map $\varphi : \mathbb{F}_q \to \mathbb{F}_q$ defined by $\varphi(\alpha) = \alpha^p$ for $\alpha \in \mathbb{F}_q$. Prove that φ is a field automorphism of \mathbb{F}_q which fixes \mathbb{F}_p . Show that the Galois group $G(\mathbb{F}_q/\mathbb{F}_p)$ is cyclic and is generated by φ .

b) Let \mathbb{F}_p be an algebraic closure of \mathbb{F}_p . Prove that the Galois group $G(\bar{\mathbb{F}}_p/\mathbb{F}_p)$ is an abelian group. (5+5)

3. Are the roots of the following equations expressible by radicals over Q? Justify your answer.

a)
$$x^5 - 4x + 2$$

b) $x^5 - 2$ (5+5)

4. Let K be the splitting field over Q of the polynomial $x^4 - 2x^2 - 1$. Find the Galois group G of K/Q, explicitly determine the action of G on the set of roots. Find all intermediate fields of K/Q and match them up with the corresponding subgroups of G. Identify all the subextensions of K/Q which are Galois. [10]